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ACADÉMIE EUROPÉENNE INTERDISCIPLINAIRE DES SCIENCES 

INTERDISCIPLINARY EUROPEAN ACADEMY OF SCIENCES 
 

Séance du Lundi 13 novembre 2023 
 

La séance est ouverte à 14h30, sous la Présidence de Victor MASTRANGELO  
 

• Étaient présents physiquement nos Collègues membres titulaires de Paris Jean BERBINAU, 
Anne BURBAN, Eric CHENIN, Jean-Félix DURASTANTI, Françoise DUTHEIL, Michel 
GONDRAN, Irène HERPE-LITWIN, Paul Louis MEUNIER, Jean SCHMETS et Jean-Pierre 
TREUIL   

• Étaient excusés physiquement pour raisons de santé nos Collègues Gilbert BELAUBRE et Gilles 
COHEN-TANNOUDJI,  

• Avaient donné leur procuration pour les élections : 
 

 
BELAUBRE Gilbert  à MASTRANGELO Victor 
BOBIN Jean-Louis  à DUTHEIL Françoise 
COHEN-TANNOUDJI Gilles à MASTRANGELO Victor 
ELSAESSER Wolfgang  à CHENIN Éric 
OLIVERIO Alberto à MASTRANGELO Victor 
PERRIER Edith à CHENIN Éric 
PUMAIN Denise  à HERPE-LITWIN Irène 

 
I. ASSEMBLÉE GÉNÉRALE DE l’AEIS pour l’Année 2023 

 
Notre Président Victor MASTRANGELO procède à l'ouverture de l'Assemblée générale.  
 
 

A. Rapports moraux et d'activités des diverses sections  
 
Les sections de NANCY, REIMS et PARIS nous ont communiqué leurs rapports d'activités et moraux. Soumis 
au vote des Collègues présents et représentés, les rapports sont adoptés à l’unanimité des votants ou 
représentés. Il en a été de même du rapport financier fourni par notre Collègue Françoise DUTHEIL.  
 
 

B. Election du nouveau bureau pour l’année 2023-2024 
 
Se présentent comme candidats aux diverses fonctions :  
 

Fonction Candidat 
Président Victor MASTRANGELO 
Vice-Présidente Édith PERRIER 
Secrétaire général Éric CHENIN 
Secrétaire générale adjointe  Irène HERPE-LITWIN 
Trésorière générale Françoise DUTHEIL 
Edition Robert FRANCK  
Relations européennes Jean SCHMETS 
Relations avec l'AX  Gilbert BELAUBRE 
Ville de Paris et Région IDF Michel GONDRAN et Jean BERBINAU 
Moyens Multimédias et Universités Moyens Multimédia : Eric CHENIN 

Relations Universités : Victor MASTRANGELO 
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Recrutements Paul-Louis MEUNIER coordinateur, Jean 
BERBINAU, Anne BURBAN, Christian GORINI, 
Jacques PRINTZ   

Thèmes et Programmes de Colloque Jean SCHMETS et Johanna HENRION-
LATCHÉ 

Synthèses scientifiques et Publications 
AEIS 

Jean-Pierre TREUIL, Marie-Françoise PASSINI 

Grands organismes de recherche 
nationaux et internationaux  

Michel SPIRO 

Mécénat Jean Félix DURASTANTI coordinateur, Jean 
BERBINAU, Anne BURBAN  

  
  

 
Se présentent comme Conseillers scientifiques au titre de l’année 2023-2024 

 
Disciplines Candidats 
Sciences de la Matière Gilles COHEN-TANNOUDJI 

Sciences de la Vie-Biotechnologies Ernesto Di MAURO 

 

L’ensemble des candidatures est adopté à l’unanimité des présents et représentés.  

C. Elections des membres consultatifs du CONSEIL D’ADMINISTRATION 
 
Se présentent en tant que membres consultatifs du Conseil d’Administration 
 

Membres consultatifs du Conseil d’Administration Gilbert BELAUBRE 
Michel GONDRAN 

 
D. Présidents de section élus (appartenant statutairement au bureau) 

Section Élu 
Nancy-Luxembourg Sylvie PIERRE 
Reims Johanna HENRION-LATCHÉ 
Section associée Athènes (Grèce) Anastassios METAXAS 
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Nous tenons à remercier vivement Mr Yann TRAN et Mme Annabelle POIRIER de l'Institut Curie pour la 
qualité de leur accueil.  
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Communications sécurisées avec des variables quantiques continues. 
 

Philippe Grangier 
Laboratoire Charles Fabry, Institut d’Optique Graduate School,  

CNRS, Université Paris-Saclay, Palaiseau, France 
philippe.grangier@institutoptique.fr 

  
Résumé 

Comme on le sait depuis Planck et Einstein au début du 20e siècle, la lumière doit être décrite par la 
physique quantique, et elle possède des propriétés à la fois discrètes et continues. Nous résumerons d'abord 
notre description actuelle de ces propriétés la lumière, et présenterons un outil intéressant pour les 
représenter intuitivement, la fonction de Wigner.  

Une application bien connue de la lumière quantique est la distribution quantique de clés secrètes 
(QKD), ou cryptographie quantique, qui s'est beaucoup développée ces dernières années. Cependant, la 
QKD reste une technologie techniquement exigeante et coûteuse, et plusieurs directions sont actuellement 
explorées pour résoudre ces difficultés. Nous présenterons en détail l'une d'entre elles, la cryptographie 
quantique à variables continues (CVQKD) [1-4], qui est beaucoup plus proche des techniques de 
télécommunication optique standard que la QKD à variables discrètes (DV). En particulier, la CVQKD 
n'utilise pas de compteurs de photons, mais des détections cohérentes (homodynes ou hétérodynes), qui sont 
désormais très courantes dans les systèmes de télécommunications commerciaux à haut débit [4]. 

Finalement, nous présenterons quelques tentatives actuelles de mise en place de réseaux quantiques, qui 
visent à surmonter les pertes de canaux de transmission, notamment par des nœuds de confiance, des 
satellites ou des répéteurs quantiques. Dans une perspective à plus long terme, nous discuterons également la 
possibilité de réaliser des interactions déterministes entre photons individuels [5]. 

 
References  
[1] F. Grosshans, G. V. Assche, J. Wenger, R. Brouri, N. J. Cerf, P. Grangier, Nature 421, 238 (2003).  
[2] P. Jouguet, S. Kunz-Jacques, A. Leverrier, P. Grangier, E. Diamanti, Nature Photon. 7, 378 (2013).  
[3] E. Diamanti and A. Leverrier, Entropy 17, 6072 (2016).  
[4] F. Roumestan et al, https://arxiv.org/abs/2207.11702 (2022) 
[5] J. Vaneecloo, S. Garcia, A. Ourjoumtsev, Phys. Rev. X 12, 021034 (2022) 
 

Secure communications with quantum continuous variables. 
 
As it has been known since the beginning of the 20th century, light must be described by quantum 

physics, and it has both discrete and continuous properties. We will first summarize our current description 
of these properties, and introduce a nice tool for representing them intuitively, that is the Wigner function.  

A well-known application of quantum light is quantum key distribution (QKD), which has been 
developing quite a lot in the recent years. However, QKD remains a technically demanding and costly 
technology, and various directions are currently explored to improve on this issue. In particular, we will 
present in details one of them, continuous variable (CV) QKD [1-4], which is much closer to standard 
optical telecommunication techniques than discrete variable (DV) QKD. In particular, CVQKD does not use 
photon counters, but coherent (homodyne or heterodyne) detections, which are now very usual in high-speed 
commercial telecom systems [4]. 

In a last part we will present current attempts towards quantum networks, which aim at overcoming 
channel losses by various ways including trusted nodes, satellites, or quantum repeaters. As a look to the 
future, we will also discuss the possibility to achieve deterministic photon-photon interactions [5]. 

 
 
 

 



Experimental Demonstration of Discrete Modulation Formats
for Continuous Variable Quantum Key Distribution

Francois Roumestan,1, 2 Amirhossein Ghazisaeidi,1 Jérémie Renaudier,1 Luis

Trigo Vidarte,3 Anthony Leverrier,4 Eleni Diamanti,2 and Philippe Grangier5

1Nokia Bell Labs, Paris-Saclay, route de Villejust, F-91620 Nozay, France
2Sorbonne Université, CNRS, LIP6, 4 place Jussieu, F-75005 Paris, France

3ICFO - Institut de Ciències Fotòniques, The Barcelona Institute
of Science and Technology, Castelldefels (Barcelona) 08860, Spain
4Inria Paris, 2 rue Simone Iff, F75589 Paris Cedex 12, France

5Université Paris-Saclay, IOGS, CNRS, Laboratoire Charles Fabry, F-91127 Palaiseau, France

Quantum key distribution (QKD) enables the
establishment of secret keys between users con-
nected via a channel vulnerable to eavesdropping,
with information-theoretic security, that is, inde-
pendently of the power of a malevolent party1.
QKD systems based on the encoding of the key
information on continuous variables (CV), such
as the values of the quadrature components of
coherent states2,3, present the major advantage
that they only require standard telecommunica-
tion technology. However, the most general secu-
rity proofs for CV-QKD required until now the
use of Gaussian modulation by the transmitter,
complicating practical implementations4–6. Here,
we experimentally implement a protocol that al-
lows for arbitrary, Gaussian-like, discrete modu-
lations, whose security is based on a theoretical
proof that applies very generally to such situa-
tions7. These modulation formats are compatible
with the use of powerful tools of coherent optical
telecommunication, allowing our system to reach
a performance of tens of megabit per second se-
cret key rates over 25 km.

Driven by the pressing need for high-security solutions
to address risks to cybersecurity posed by rapid techno-
logical progress, the development of quantum key dis-
tribution (QKD) systems has advanced significantly in
recent years8–10. A major challenge in this direction is to
leverage the high potential of techniques that have been
developed with great success for the classical telecommu-
nication industry, with the goal of both enhancing the
performance of QKD systems and assuring their smooth
integration into deployed fibre optic network infrastruc-
tures. Continuous-variable (CV) QKD schemes3,11 are
particularly well suited for this purpose. The key feature
of such schemes is that dedicated photon-counting tech-
nology required in standard single-photon based schemes
can be replaced by coherent detection techniques that
are widely used in classical optical communications. This
hardware simplification, however, comes at the price of
a more involved theoretical analysis, and security proofs
typically require the transmitter, commonly called Alice,

to prepare coherent states with a Gaussian modulation to
be sent to the receiver, Bob. Such a modulation has been
used for advanced experimental implementations4–6, but
is not a common industrial practice; a more practical ap-
proach is to send coherent states chosen from a finite con-
stellation in phase space. Although such discrete modu-
lations were considered early in CV-QKD12–14, sound se-
curity proofs have been developed only recently, for pro-
tocols with either very large constellation sizes15 or very
small ones16–19, with some experimental implementations
in the latter case20,21. But the most interesting format of
medium-size quadrature amplitude modulation (QAM)
used in classical optical communications remained out of
reach for these methods, which rely on solving huge con-
vex optimization problems. This outstanding issue was
solved in Ref.7, which provided an analytical bound for
the asymptotic secret key rate of protocols with arbitrary
modulation schemes, including probabilistic constellation
shaping (PCS) QAM22. Strictly speaking, this bound is
not tight, but it becomes essentially so for any QAM of
size greater than 64.

Here, we experimentally demonstrate CV-QKD with
PCS 64-QAM and 256-QAM that can reach very high
peak secret key rate (SKR) with standard hardware and
software compatible with current telecommunication sys-
tems23,24. We emphasize that our choice of modula-
tion format presents a number of advantages in practice:
the use of QAM ensures the need for a smaller number
of random numbers and leads in principle to more ef-
ficient post-processing, pulse shaping requires a smaller
bandwidth, and PCS optimizes the mutual information
bringing it closer to Shannon channel capacity. Our re-
sults thus open the way towards integrating CV-QKD in
standard optical communication systems, in an efficient,
transparent, and cost-efficient way.

CV-QKD protocol and security proof. In the Prepare-
and-Measure (PM) coherent state CV-QKD protocol
with discrete modulation, Alice prepares coherent states
|α〉 = |(p+ iq)/2〉, chosen at random from a discrete con-
stellation. She sends them through an optical link to
Bob who measures them using coherent detection.This
quantum transmission phase is followed by classical post-
processing, in which Alice and Bob compare a randomly
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chosen fraction of their data to estimate the channel pa-
rameters and thus the length of the final key. Then they
correct errors through a reconciliation step and finally
turn their identical data set into a shorter secret key via
privacy amplification.

The security of this PM protocol is analysed through
an equivalent Entanglement-Based (EB) protocol3,
where Alice (virtually) prepares an initial entangled
state, measures one mode and transmits the second mode
to Bob through the quantum channel. Exploiting the
property that Gaussian states maximize the Holevo in-
formation between Bob’s measurement outcome and the
eavesdropper quantum memory25–27, it is sufficient to
compute the covariance matrix of the bipartite state
shared by Alice and Bob before measurement. The dif-
ficulty is that this virtual state is never prepared nor
measured in the true PM protocol. Rather, the goal is
for Alice and Bob to infer this covariance matrix from
the data they observe in the PM protocol.

While this task is straightforward when the modula-
tion is Gaussian4,6,11, it is much more involved in the
case of a discrete modulation. There, one needs to solve
a semidefinite program whose dimension scales both with
the constellation size and the dimension of the relevant
Hilbert space – infinite for CV protocols. Even if it is pos-
sible to truncate the Fock space to a relevant subspace28,
this numerical approach quickly becomes untractable as
soon as the constellation size exceeds 10. The main con-
tribution of Ref.7 is to provide an analytical formula for
the covariance matrix, depending only on easily measur-
able quantities in the PM protocol, namely the variance
of Bob’s measurement result and two correlation coeffi-
cients between Alice and Bob’s data. This will be ana-
lyzed further below.

PCS QAM for CV-QKD. The probabilistic constel-
lation shaping with quadrature amplitude modulation
(PCS QAM) is a standard modulation method29, involv-
ing a discretized Gaussian probability distribution πk,l
given by

αk,l = α0(k + il) (1)

πk,l =
exp(−ν|αk,l|2)∑
k,l exp(−ν|αk,l|2)

, (2)

where k + il are the points of a standard QAM con-
stellation, and ν > 0 and α0 > 0 are free parameters
such that

∑
k,l πk,l|αk,l|2 = VA/2. Here, VA is the vari-

ance of Alice’s modulation, measured in shot-noise units
(SNU), i.e., such that the variance of the shot noise
equals one. Since PCS QAM are commonly used in mod-
ern high-rate coherent optical transmission systems, very
efficient digital signal processing techniques have been
developed. Moreover, PCS QAM are good candidates
for discrete modulation with near optimal SKR, thanks
to their Gaussian-like distribution30. When using PCS
QAM, it is crucial to optimize the free parameter ν to
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Figure 1: Constellation probability distributions for (a) PCS
64-QAM with ν = 0.0749, and (b) PCS 256-QAM with

ν = 0.0294. In both cases bottom units are
√
SNU and

α0 = 2
√
SNU . Connecting lines and equivalent Gaussian

distributions are depicted for clarity. The free parameter ν
appears in the discretized Gaussian probability distribution
describing the constellation, and its optimization is crucial
for the maximization of the SKR.

maximize the SKR. Using numerical calculation, we ob-
served that the optimal value depends only on Alice’s
modulation variance VA. In the following, both VA and
ν are chosen to maximize the SKR for either 64-QAM or
256-QAM modulations, as displayed on Fig. 1.

Power
meter

IQ DP modulatorLaser

Arbitrary
Waveform
Generator

Laser (LO)

O
scilloscope

180°
H

ybrid

Optical
switch

BobAlice

Figure 2: Experimental setup. The setup only involves
off-the-shelf, state-of-the-art telecom equipment. The 1550-
nm laser has a 10 kHz nominal linewidth. The Arbitrary
Waveform Generator feeds the dual-polarization in-phase-
and-quadrature (DP-IQ) modulator with four 600 MBaud sig-
nals with Root Raised Cosine (RRC) pulse shape. An optical
power meter and an attenuator at the output of Alice are used
to monitor VA. Bob uses a 180 degrees hybrid to interfere the
signal with the local oscillator (LO) and a set of four amplified
balanced photodetectors, whose outputs are sampled using a
real-time oscilloscope and processed by offline digital signal
processing. At the input of Bob, a microelectromechanical
optical switch is used to periodically turn off the signal to
perform shot noise measurements for noise calibration.

Experimental implementation. The main idea behind
the development of the experimental system in our work
is to use only commercially available, latest generation
telecom equipment in order to provide a convenient cost-
efficient solution. Important requirements that we sought
for were high resolution, low noise and a bandwidth of
at least 1 GHz. The setup is shown in Fig. 2. Alice
generates coherent states using a 1550 nm tunable laser
source with nominal 10 kHz linewidth (Pure Photonics).
A dual polarization (DP) in-phase-and-quadrature (IQ)
modulator (Fujitsu) is used to modulate the phase and
amplitude of the laser beam. The analog inputs of the



3

D
S

P

Bandwidth conversion

RRC matched filter

CAZAC Synchronization

Pilot-aided CMA Equalizer

Carrier Frequency Estimation

Carrier Phase Estimation

Filter

QKD Parameter Estimation

Filter

parameters

Figure 3: Bob’s digital signal processing building blocks. DSP
consists in a combination of digital filter matching the pulse
shape of input symbols yH , yV , auto-correlation for retriev-
ing the time-multiplexed pilots used in our experiments, a
pilot-aided adaptive equalizer technique, and finally carrier
frequency and phase estimation algorithms. It is then possi-
ble, by using the transmitted data together with noise calibra-
tion data nH , nV that have undergone the same processing,
to estimate the secret key rate.

DP-IQ modulator are fed with the output of an Arbitrary
Waveform Generator (AWG) with 5 GS/s sampling rate
and 14 bits nominal resolution. The AWG outputs four
600 MBaud signals with Root Raised Cosine (RRC) pulse
shape29. At the output of Alice’s lab, an optical power
meter and an optical attenuator are used to monitor VA.
Bob uses a 180 degrees hybrid to interfere the signal with
the phase reference (or local oscillator, LO), which is gen-
erated with a laser identical to Alice’s. Four amplified
balanced photodetectors convert the received optical sig-
nal to an analog electronic signal, which is then sampled
using a 1 GHz real-time oscilloscope with 5 GS/s sam-
pling rate and 12 bits nominal resolution. The sampled
waveforms are stored for offline digital signal process-
ing (DSP, see below). In the present experiment, the
memory and writing speed of the oscilloscope impose to
perform noise calibration and parameter estimation one
acquisition at a time, but in a full-scale implementation
the oscilloscope and offline DSP would be replaced by a
continuously running receiver with real-time DSP.

Digital signal processing. The implementation of
DSP suitable for CV-QKD is one of the most impor-
tant practical challenges of this work. The main build-
ing blocks are shown in Fig. 3. The algorithm inputs
four sampled waveforms y1(k), y2(k), y3(k), y4(k), with
an average number of samples per transmitted symbol
n̄sps = 8.3 (calculated by dividing the 5 GS/s sam-
pling rate with the 600 Mbaud symbol rate). The wave-
forms are then assembled into two complex waveforms
yH(k) = y1(k) + jy2(k) and yV (k) = y3(k) + jy4(k).
If the signal is single-side band (see details in Meth-
ods), it is converted into a baseband signal by a digital
frequency shift, and a digital filter matching the pulse

shape is applied; a root raised cosine (RRC) filter in our
case. Then, we use a constant amplitude zero autocor-
relation waveform (CAZAC) sequence31 to compute the
auto-correlation on the signal in order to retrieve the be-
ginning of the time-multiplexed pilot sequence used in
our implementation. The next steps are to correct linear
impairments using a pilot-aided CMA adaptive equal-
izer32 (see details in Methods), and to apply carrier fre-
quency and carrier phase estimation algorithms. Finally,
using the noise calibration symbols, denoted as nH and
nV in Fig. 3, which undergo the same DSP operations,
QKD parameters are estimated to compute the achiev-
able secret key rate.

These algorithms are obviously unable to perfectly cor-
rect channel impairments, and the DSP imperfections
may result in apparent channel excess noise. Therefore
it is crucial to optimize the various DSP parameters to
minimize excess noise, ideally for each individual run of
the experiment producing a block of data. In this work,
the optimization procedure has been performed offline,
after signal acquisition, and is described in Methods.

Noise calibration measurements. Most of the CV-
QKD parameters are expressed in SNU. However, Bob
effectively measures samples U of an electrical tension
expressed in volts; see Methods for a description of the
required calibration procedure. We note that the LO
intensity and thus the shot noise may vary during the
experiment, making it necessary to periodically reiterate
the procedure of recording shot noise samples as often
as possible. For this purpose, Bob’s setup includes an
optical switch used to turn on and off the signal light
coming from Alice. This procedure is repeated once ev-
ery minute. Finally, the normalized value VB of Bob’s
variance can be written as

VB = 1 + ηTVA/2 + Vel + ξB , (3)

where T is the channel transmission efficiency, and ξB is
the excess noise measured at Bob’s site, to be evaluated
by Alice and Bob. The quantum efficiency and electronic
noise of Bob’s detectors, which in our experiment take the
values η = 0.65 and Vel = 0.1, respectively, are supposed
here to be known to the legitimate users and cannot be
modified by Eve.

Non-Gaussian attacks. Recall that in our protocol,
which follows the security proof of Ref.7, Alice and Bob
should not in fact evaluate T and ξB from the data, but
rather three parameters, denoted as c1, c2 and nB . Un-
der the assumption of a Gaussian channel these parame-
ters are simply related to T and ξB , and to the parame-
ters defining the constellation33. However, the Gaussian
channel assumption is not justified for an arbitrary at-
tack by Eve on a discrete modulation, and c1, c2 and nB
must be evaluated directly. As a consequence, the SKR,
related to the Holevo quantity, is a function f(c1, c2, nB),
instead of the usual g(T, ξB); see Ref.33.
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Fiber Modulation ν VA[SNU] ξB [mSNU] SKR[Mbps]

9.5 km
SMF-28

64-QAM 0.0688 5.32 0.197 60.2
256-QAM 0.0362 7.11 0.132 91.8

25 km
EX3000

64-QAM 0.0460 4.20 1.170 0.0
256-QAM 0.0380 6.53 0.900 24.0

Table I: Modulation variance VA (in SNU), indicative excess
noise ξB (in mSNU) and SKR calculated using the security
proof of Ref.7 including finite-size effects (in Mbps), for PCS
64-QAM and PCS 256-QAM, during 1 hour of experiment,
with 9.5 km of SMF-28 and 25 km of EX3000 fiber. The
block size is N = 5× 106.

Under our experimental conditions, we found the ef-
fective channel to be very well described by a Gaussian
model, and we observe f(ĉ1, ĉ2, n̂B) ' g(T̂ , ξ̂B). How-
ever, the direct evaluation of these formulas with the es-
timators ignores finite-size effects. In order to take them
into account, we evaluate the formulas with worst-case
estimators7, i.e., we rather compute f(ĉmin

1 , ĉmin
2 , n̂max

B ),

which is less favorable than g(T̂min, ξ̂max
B ) for a Gaussian

channel. This is the procedure followed to obtain the re-
sults provided in Table I, which correspond to a rigorous
implementation of the protocol with the security proof
for a discrete modulation33.

Results. Our experiment was performed with either
9.5 km of SMF-28 or 25 km of EX3000 fiber. The 25 km
fiber link has a total loss of 4.3 dB. In each case the most
critical DSP parameters are optimized to minimize the
excess noise. In the present implementation the system
operates with acquisitions of length 20 ms from which,
after processing, N = 5 × 106 QKD symbols are used
for parameter estimation. Finally, the DSP optimization
process is performed on a subset of 12 acquisitions.

Figure 4 shows the estimated SKR for the 9.5 km SMF-
28 fiber, for PCS 64 and 256-QAM. The estimation is
based on the proof for an arbitrary modulation protocol7,
assuming β = 0.9534, and using worst-case estimators
with N = 5 × 106 and security parameter ε = 10−10,
following Refs.35–37. Table I summarizes the results with
modulation variance VA values (in SNU), excess noise
ξB values (in SNU), which are included as an indication
of system performance, and SKR (in Mbps) calculated
following the aforementioned procedure.

We can achieve a secret key rate of ∼ 92 Mbps over
9.5 km and 24 Mbps over 25 km, using PCS 256-QAM
format, averaged over 100 transmission blocks of N =
5× 106 QKD symbols. PCS 64-QAM gives lower perfor-
mance, as theoretically expected. The expected behavior
as a function of distance is shown in Fig. 5. By com-
parison with the current state of the art5,6,9,10,24, these
results confirm the high performance reached by our sys-
tem by adopting techniques from standard optical com-
munication and following the security proof for discrete
modulation, including finite-size effects.
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Figure 4: Estimated secret key rate for each block of acquired
data, plotted as a function of the acquisition time, for PCS
64 and 256-QAM, with 9.5 km SMF-28 link.

0 5 10 15 20 25 30 35
Equivalent SMF-28 distance [km]

0 1 2 3 4 5 6 7
Fiber channel attenuation [dB]

10

100

1000

S
ec

re
t

K
ey

R
at

e
[M

b
p

s]
SMF-28
9.5 km

EX3000
25 km

Gaussian

PCS-256

PCS-64

Figure 5: Experimental results of secret key rate as a function
of the channel attenuation and distance considering finite-size
effects and neglecting post-processing times. Two modula-
tion formats (PCS-64 and PCS-256) and two fibers have been
used in this experiment; a 9.5 km standard single mode fiber
(SMF-28) with attenuation coefficient 0.2 dB/km and a 25 km
EX3000 fiber with attenuation coefficient 0.172 dB/km. PCS-
64 modulation at 25 km does not yield a positive key rate.
The expected SKR of a setup with Gaussian modulation in
the asymptotic regime is plotted for comparison, assuming
the same repetition rate R = 600 MBaud, ξB = 0.5 mSNU,
and Alice using the optimal VA. The block size is N = 5×106.

Conclusion. The laboratory experiment presented in
this work opens interesting avenues towards faster and
more flexible implementations of CV-QKD, within the
standard environment of high bit rate coherent telecom-
munications. It leverages in particular industry-grade
digital signal processing techniques that have been min-
imally modified for the CV-QKD implementation. To
take full advantage of these improvements, it would
be necessary to also improve the speed of data post-
processing, which should be facilitated by the use of dis-
crete constellations.

METHODS

Pilot amplitude and rate. To correctly retrieve the
low signal-to-noise ratio QKD symbols, the DSP relies
on QPSK (that is 4-QAM) pilot symbols with a higher
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Figure 3.16: Excess noise ›B vs step size µ and number of taps of adaptive equalizer
described in subsection 2.5.2, averaged over 12 acquisitions of PCS 256-QAM signal
with receiver (b) and 25 km of EX3000 fiber.

3.3.4 New experiment

We perform the same experiment than in subsection 3.3.2, with 9.5 km of SMF and
25 km of EX3000 fiber. The 25 km fiber link has a total channel loss of 4.3 dB.
Similarly to subsection 3.3.3, we optimize the most critical DSP parameters to min-
imize the excess noise. For this experiment, we also want to increase the number N
of QKD symbols per acquisition. Until now, we performed both noise calibration
and signal acquisition for each use of the oscilloscope. This way, the two steps were
done consecutively without any delay. Unfortunately, this method reduces the oscil-
loscope memory dedicated to the signal acquisition by two. In this new experiment,
we perform each step separately, and the noise calibration is performed every five
signal acquisition. The new acquisition length is 20 ns, and the number of QKD
symbols for parameter estimation is N = 5 ◊ 106.

The o�ine DSP optimization process described in subsection 3.3.3 is performed
on a subset of 12 acquisition. In fact, the figures given as an illustration are actually
obtained with acquisition from this new experiment. Then, the DSP is performed
with the optimized DSP parameters given in 3.3.3.

Figures 3.18 and 3.18 give the estimated excess noise of this new experiment, for
the 9.5 km SMF and the 25 km EX3000 fiber, for PCS 64 and 256-QAM, andthe
associated SKR estimated using the proof for arbitrary modulation protocol, with
assumption — = 0.95, and worst case estimator of the excess noise with N = 5 ◊ 106

and security parameter ‘ = 10≠8. Table 3.3 summarizes the results with average
values for the modulation variance VA, excess noise ›B (both in SNU) and SKR in
Mb/s. Let’s remark that some excess noise values are actually negative. This is
due to statistical fluctuation of the estimations of VB and N0 + Vel. However, with
worst case estimator, the actual excess noise values used to compute the SKR are

Figure 6: Excess noise ξB vs. step size µ and number of taps
of adaptive equalizer, averaged over 12 acquisitions of PCS
256-QAM signal and 25 km of EX3000 fiber.

power, which needs to be optimized before signal acquisi-
tion. This is done by acquiring QKD signals with various
values of the pilot amplitude, and applying the DSP to
estimate the excess noise. Using such experimental tests,
the pilot over QKD symbol power ratio was adjusted to
14 dB. The same optimization should be performed for
the pilot rate. Contrary to pilot amplitude, the crite-
rion to optimize the pilot rate is not the excess noise. In
fact, if an increase of the pilot rate decreases the excess
noise, it also decreases the rate of QKD symbols. Hence,
we need to optimize directly the SKR. Using again an
experimental optimization, we fixed the pilot rate to 4
pilots over 8 symbols, i.e., half of the transmitted sym-
bols are actually pilots.

Adaptive equalizer. For each experiment, we want to
find the DSP parameters that minimize the excess noise.
Since the DSP is performed offline, we can do a brute
force optimization for the most relevant parameters, on
a few acquisitions. To start with, we jointly optimize two
parameters of the adaptive equalizer for polarization de-
multiplexing38: ntaps, number of taps, and µ, the step
size. For each couple (ntaps, µ) under test, the DSP is
applied to 12 different acquisitions. Figure 6 shows the
average excess noise for all the tested (ntaps, µ), for ex-
perimental PCS 256-QAM data obtained in conditions
slightly different than those presented in the main text.
We observe that the lowest values of excess noise are
achieved with 97 taps and a step size µ of 10−6.

Signal conditioning. We observed the presence of low
frequency components of the excess noise, below 20 MHz,
that we attribute to cutoff frequencies of the hardware
as well as additive noise stemming from the electrical
line. To avoid these perturbations, the outputs of the
AWG are digitally upshifted such that the signal has no
frequency component in the noisy region. In particular,
the 600 MBaud signal with RRC pulse shape and roll-off
factor 0.4, corresponding to a bandwidth of 840 MHz, is
upshifted by 500 MHz such that the useful bandwidth
extends from 80 MHz to 920 MHz. The baudrate and

roll-off factor have to be jointly optimized to minimize
the excess noise. Furthermore, as noted above, the ratio
of the QPSK pilots power relatively to the QAM symbols
power has to be optimized to minimize the excess noise.
Noise calibration. Since Bob effectively measures

samples U of an electrical tension expressed in volts, and
obtains variances Var(U) in V 2, he needs to estimate the
quantity N0, namely the variance of the shot noise ex-
pressed in V 2. When disconnecting the signal input of
the receiver, the output of the receiver is the sum of the
shot noise and the electronic noise; therefore Bob can
measure Var(U) = N0(1 + Vel), where Vel is the variance
of the receiver’s electronic noise in SNU. Then, discon-
necting the LO input, Bob measures only the electronic
noise, Var(U ′) = N0Vel and N0 = Var(U)−Var(U ′).

This procedure gives four different values N
(1)
0 , N

(2)
0 ,

N
(3)
0 , and N

(4)
0 , one for each channel of the oscilloscope.

In practice, the samples measured on a channel are a
mixture of the quadratures of the coherent states sent by
Alice, that are recovered only after the DSP. This comes
from several channel impairments such as polarization
rotation or carrier phase noise. As a consequence, if the

N
(i)
0 are not all equal, they do not correspond to the

variances of the shot noise on the quadratures effectively
transmitted by Alice. To tackle this issue, we apply to
the shot noise samples the same DSP correction as to
the signal itself, and estimate the variances afterwards.
In other words, the DSP operations applied to the signal
samples are simultaneously applied to the noise samples.

Signal averaging. Our use of a worst-case estimator
is justified if the fluctuations observed on the parameters
are of a statistical nature. Given that all 5 × 106 data
points within a data block are very close in time (total
acquisition time 20 ms), the population variance can be
considered sufficiently close to the theoretical variance
to assume that fluctuations on the excess noise measure-
ment are essentially of statistical nature. Therefore, the
use of the worst-case estimator for the excess noise can
be considered acceptable to take into account finite-size
effects on the security of the protocol, although a more
rigorous theoretical treatment of finite-size issues remains
desirable.
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Quantum continuous variables [1] are being explored [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14]
as an alternative means to implement quantum key distribution, which is usually based on single
photon counting [15]. The former approach is potentially advantageous because it should enable
higher key distribution rates. Here we propose and experimentally demonstrate a quantum key
distribution protocol based on the transmission of gaussian-modulated coherent states (consisting of
laser pulses containing a few hundred photons) and shot-noise-limited homodyne detection; squeezed
or entangled beams are not required [13]. Complete secret key extraction is achieved using a reverse
reconciliation [14] technique followed by privacy amplification. The reverse reconciliation technique
is in principle secure for any value of the line transmission, against gaussian individual attacks based
on entanglement and quantum memories. Our table-top experiment yields a net key transmission
rate of about 1.7 megabits per second for a loss-free line, and 75 kilobits per second for a line with
losses of 3.1 dB. We anticipate that the scheme should remain effective for lines with higher losses,
particularly because the present limitations are essentially technical, so that significant margin for
improvement is available on both the hardware and software.

Much interest has arisen recently in using the elec-
tromagnetic field amplitudes to obtain possibly more
efficient quantum continuous variable (QCV) alterna-
tives [2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14] to
the usual photon-counting quan tum key distribution
(QKD) techniques (see ref. [15] and references therein)
— for instance, by using “non-classical” light beams
[2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. In fact, it was shown in
ref. [13] that squeezed or entangled light is not required
to achieve this goal: an equivalent level of security may
be obtained by transmitting “quasi-classical” coherent
states. When the line transmission is larger than 50 %
(line loss ≤ 3 dB), the physical limits on QCV cloning
[16, 17, 18] ensure that this protocol is secure against
individual attacks. This corroborates the fact that QKD
only requires non-orthogonal states, and may well work
with macroscopic signals instead of single photons [19].
There are in principle various way s for the partners Alice
and Bob to distribute keys beyond this 3 dB limit, for
instance by using entanglement purification [20] or post-
selection [12]. Therefore these QCV schemes stimulate
many fundamental questions about the physical origin of
QKD security. As will be shown below, cryptographic
security appears to have a strong relationship with en-
tanglement, even though our protocol does not rely on
entangled states.

Here we introduce and implement a coherent-state
QKD protocol, and we demonstrate that it is, in prin-
ciple, secure for any value of the line transmission. It
relies on the distribution of a gaussian key [7] obtained
by continuously modulating the phase and amplitude of

∗Published in Nature (London) 421, 238-241 (16 January 2003).

coherent light pulses [13] at Alice’s side, and subsequently
performing homodyne detection at Bob’s side. The con-
tinuous data are then converted into a common binary
key via a specifically designed reconciliation algorithm
[8, 10]. The security against arbitrarily high losses is
achieved by reversing the reconciliation protocol, that is,
Alice attempts to guess what was received by Bob rather
than Bob guessing what was sent by Alice. Such a reverse
reconciliation protocol [14] gives Alice an advantage over
a potential eavesdropper Eve, regardless of the line loss.
The practical limitations of our scheme are essentially
technical, and appear to be due mostly to the limited
efficiency of the reconciliation software.

The protocol runs as follows [13]. First, Alice draws
two random numbers xA and pA from a gaussian dis-
tribution of mean zero and variance VAN0, where N0

denotes the shot-noise variance. Then, she sends the co-
herent state |xA + ipA〉 to Bob, who randomly chooses
to measure either quadrature x or p. Later, using a pub-
lic authenticated channel, he informs Alice about which
quadrature he measured, so she may discard the irrele-
vant data. After many similar exchanges, Alice and Bob
(and possibly the eavesdropper Eve) share a set of corre-
lated gaussian variables, which we call “key elements”.

Classical data processing is then necessary for Alice
and Bob to obtain a fully secret binary key. First, Al-
ice and Bob publicly compare a random sample of their
key elements to evaluate the error rate and transmission
efficiency of the quantum channel. From the observed
correlations, Alice and Bob evaluate the amount of infor-
mation they share (IAB = IBA) and the maximum infor-
mation Eve may have obtained (by eavesdropping) about
their values (IAE and IBE). It is known that Alice and
Bob can, in principle, distil from their data a common se-
cret key of size S > sup(IAB − IAE , IBA − IBE) bits per

http://arXiv.org/abs/quant-ph/0312016v1
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key element [21, 22]. This requires classical communica-
tion over an authenticated public channel, and may be
divided into two steps : reconciliation (that is, correcting
the errors while minimizing the information revealed to
Eve) and privacy amplification (that is, making the key
secret). As we deal here with continuous data, we devel-
oped a “sliced” reconciliation algorithm [8, 10] to extract
common bit strings from the correlated key elements. In
order to reconcile Bob’s measured data with Alice’s sent
data, the most natural way to proceed is that Bob gets
R extra bits of information from Alice in order to cor-
rect the transmission errors. The corresponding direct
reconciliation (DR) protocols, which have been used so
far in QCV QKD [7, 13], allow the generation of a com-
mon string of IAB + R bits, of which Eve may know up
to IAE + R bits. Here we rather consider reverse recon-
ciliation (RR) protocols [14], where Bob sends R bits of
information to Alice so that she incorporates the trans-
mission errors in her initial data. These RR protocols
allow the generation of a common string of IBA +R bits,
of which Eve may know IBE+R bits. This turns out to be
particularly well suited to QCV QKD, because it is more
difficult for Eve to control the errors at Bob’s side than
to read Alice’s modulation. The last step of key extrac-
tion, namely privacy amplification, consists of filtering
out Eve’s information by properly mixing the reconciled
bits to spread Eve’s uncertainty over the entire final key.
This procedure requires an estimate of Eve’s information
on the reconciled key, so we need a bound on IAE for
DR, or IBE for RR. In addition, Alice and Bob must
keep track of the information publicly revealed during
reconciliation. This knowledge is destroyed at the end
of the privacy amplification procedure, reducing the key
length by the same amount. The DR bound [13] on IAE

implies that the security cannot be warranted if the line
transmission G is below 50%. We will now establish the
RR bound on IBE , and show that it is not associated
with a minimum value of G.

In a RR scheme, Eve needs to guess Bob’s measure-
ment outcome without adding too much noise on his
data. This can be done via an “entangling cloner”, which
creates two quantum-correlated copies of Alice’s quan-
tum state, so Eve simply keeps one of them while sending
the other to Bob. Let (xin, pin) be the input field quadra-
tures of the entangling cloner, and (xB , pB), (xE , pE) the
quadratures of Bob’s and Eve’s output fields. To be safe,
we must assume Eve uses the best possible entangling
cloner compatible with the parameters of the Alice-Bob
channel: Eve’s cloner should minimize the conditional
variances [23, 24] V (xB |xE) and V (pB|pE), that is, the
variances of Eve’s estimates of Bob’s field quadratures
(xB , pB). These variances are constrained by Heisenberg-
type relations (see Appendix A), which limit what can be
obtained by Eve:

V (xB |xA)V (pB|pE) ≥ N2

0

V (pB |pA)V (xB |xE) ≥ N2

0
(1)

where V (xB |xA) and V (pB|pA) denote Alice’s condi-

tional variances. This means that Alice and Eve can-
not jointly know more about Bob’s conjugate quadra-
tures than is allowed by the uncertainty principle. Now,
Alice’s variances can be bounded by using the measured
parameters of the quantum channel, which in turn makes
it possible to bound Eve’s variances.

The channel is described by the linear relations xB =

G
1/2

x (xin + Bx) and pB = G
1/2

p (pin + Bp), with 〈x2

in
〉 =

〈p2

in
〉 = V N0 ≥ N0, 〈B2

x,p〉 = χx,pN0, and 〈xinBx〉 =
〈pinBp〉 = 0. Here χx, χp represent the channel noises re-
ferred to its input, called equivalent input noises [23, 24],
while Gx, Gp are the channel gains in x and p, and
V is the variance of Alice’s field quadratures in shot-
noise units (V = VA + 1). The output-output correla-
tions of the entangling cloner, described by V (xB |xE)
and V (pB|pE), depend only on the density matrix Din

of the input field (xin, pin), and not on the way it is pro-
duced, namely whether it is a gaussian mixture of coher-
ent states or one of two entangled beams. Inequalities (1)
thus have to be fulfilled for all physically allowed values
of V (xB |xA) and V (pB|pA), given Din. Therefore, the
values of V (xB |xA) and V (pB|pA) that should be used in
inequalities (1) to limit Eve’s knowledge are the minimum
values Alice might achieve by using the maximal entan-
glement compatible with V , namely (see Appendix A)

V (xB |xA)min = Gx(χx + V −1)N0

V (pB|pA)min = Gp(χp + V −1)N0 (2)

These lower bounds are thus directly connected with en-
tanglement, even though Alice does not use it in prac-
tice. They may be compared with the actual values
when Alice sends coherent states, that is, V (xB |xA)coh =
Gx(χx + 1)N0 and V (pB|pA)coh = Gp(χp + 1)N0. The
lower bounds on Eve’s conditional variances are then ob-
tained from equations (1) and (2), as:

V (pB|pE) ≥ N0/{Gx(χx + V −1)}

V (xB |xE) ≥ N0/{Gp(χp + V −1)} (3)

A physical realization of an entangling cloner reaching
these bounds is sketched in ref. [14].

To assess the security of the RR scheme, one assumes
that Eve’s ability to infer Bob’s measurement can reach
the limit put by inequalities (3). For simplicity, we con-
sider the channel gains and noises and the signal vari-
ances to be the same for x and p (in practice, deviations
should be estimated by statistical tests). The informa-
tion rates can be derived using Shannon’s theory for gaus-
sian additive-noise channels [25], giving

IBA = (1/2) log2[VB/(VB|A)coh]

= (1/2) log2[(V + χ)/(1 + χ)] (4a)

IBE = (1/2) log
2
[VB/(VB|E)min]

= (1/2) log2[G
2(V + χ)(V −1 + χ)] (4b)

expressed in bits per symbol (or per key element). Here
VB = 〈x2

B〉 = 〈p2

B〉 = G(V + χ)N0 is Bob’s vari-
ance, (VB|E)min = V (xB |xE)min = V (pB|pE)min =
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FIG. 1: Experimental set-up. Laser diode, SDL 5412
(780 nm); OI, optical isolator; λ/2, half-wave plate;
AOM, acousto-optic modulator; MF, polarization maintain-
ing single-mode fibre; OA, optical attenuator; EOM, electro-
optic amplitude modulator; PBS, polarizer; BS, beam split-
ter; PZT, piezoelectric transducer. Focal lengths (f ′) are
given in millimetres. R and T are reflection and transmis-
sion coefficients.

N0/{G(χ + V −1)} is Eve’s minimum conditional vari-
ance, and (VB|A)coh = V (xB |xA)coh = V (pB|pA)coh =
G(χ+1)N0 is Alice’s conditional variance for a coherent-
state protocol. The secret bit rate of a RR protocol is
thus

∆IRR = IBA − IBE

= −(1/2) log2[G
2(1 + χ)(V −1 + χ)] (5)

and the security is guaranteed if ∆IRR > 0. The equiva-
lent input noise χ can be split into a “vacuum noise” com-
ponent due to the line losses, given by χvac = (1−G)/G,
and an “excess noise” component defined as ǫ = χ−χvac.
In the high-loss limit (G ≪ 1), the RR protocol remains
secure if ǫ < (V −1)/(2V ) ≈ 1/2, that is, if the amount of
excess noise ǫ is not too large. In contrast, a DR protocol
requires low-loss lines, as the security is warranted only
if χ < 1, that is, if G > 1/(2−ǫ). Note that DR tolerates
an excess noise up to ǫ ≈ 1, so it might be preferred to
RR for low-loss but noisy channels.

Our experimental implementation (Fig. 1) of the quan-
tum key exchange uses 120-ns coherent pulses at a 800-
kHz repetition rate (wavelength of 780 nm, see Ap-
pendix A). Data bursts of 60,000 pulses have been anal-
ysed (Fig. 2). For each burst, a subset of the values are
disclosed to evaluate the transmission G and the total
added noise variance. The output noise has four contri-
butions: the shot noise N0, the channel noise χlineN0,
the electronics noise of Bob’s detector (Nel = 0.33N0),
and the noise due to imperfect homodyne detection effi-
ciency (Nhom = 0.27N0). When introducing line losses
using a variable attenuator, the measured χline increases

FIG. 2: Bob’s measured quadrature as a function of the am-
plitude sent by Alice (in Bob’s measurement basis) for a burst
of 60,000 pulses. The line transmission is 100% and the mod-
ulation variance is V = 41.7. The solid line represents the
expected unity slope. Inset, the corresponding histograms of
Alice’s (grey curve) and Bob’s (black curve) data.
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FIG. 3: Channel equivalent noise χline as a function of line
transmission G. The curve is the theoretical prediction χvac =
(1 − G)/G. The errors bars include two contributions with
approximately the same size, from statistics (evaluated over
blocks of 60,000 pulses) and systematics (calibration errors
and drifts).

as (1−G)/G, as shown in Fig. 3 (ǫline = 0 here). The two
detection noises Nel and Nhom originate from Bob’s de-
tection system, so they must be taken into account when
estimating IBA. In contrast, we may reasonably assume
that Eve cannot know or control the corresponding fluc-
tuations, so her attack is inferred on the basis of the
line noise χline only (see Appendix B for details). Fig-
ure 4 shows explicitly the mutual information between
all parties, which makes straightforward the comparison
between the DR and RR protocols.

We wrote a computer program that implements the
reconciliation algorithm followed by privacy amplification
(see Appendices A and B). Although Alice and Bob are
not spatially separated in the present set-up, the anal-
ysed data have the same structure as in a realistic cryp-
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V Gline Losses IBA IBE Irec Ideal RR rate Practical RR rate Ideal DR rate Practical DR rate

(dB) (bit) (% IBA) (% IBA) (kbit s−1) (kbit s−1) (kbit s−1) (kbit s−1)

41.7 1 0 2.39 0 88 1,920 1,690 1,910 1,660

38.6 0.79 1.0 2.17 58 85 730 470 540 270

32.3 0.68 1.7 1.93 67 79 510 185 190 –

27 0.49 3.1 1.66 72 78 370 75 0 –

43.7 0.26 5.9 1.48 93 71 85 – 0 –

TABLE I: Ideal and practical net secret key rates. The parameters of the quantum key exchange are measured for several
values of the channel transmission G (the corresponding losses are also given in decibels). The variations of the variance
V of Alice’s field quadrature are due to different experimental adjustments. The information IBA is given in bits per time
slot. Also shown are the maximum information gained by Eve (IBE) and the extracted information by reverse reconciliation
(Irec). The ideal secret key bit rates would be obtained from our measured data with perfect key distillation that yields exactly
IBA − IBE bits (RR) or IAB − IAE bits (DR), whereas the practical secret key bit rates are the one achieved with our current
key distillation procedure (“–” means that no secret key is generated). Both bit rates are calculated over bursts of about 60,000
pulses at 800 kHz, not taking into account the duty cycle (∼ 5%) in the present set-up.
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FIG. 4: Values of IBA, IBE, and IAE as a function of the
line transmission G for V ≈ 40. Here, IBA is given by
equation (4a), including all transmission and detection noises
for evaluating VB and (VB|A)coh. The expression for IBE is
given by equation (4b), using the same VB and (VB|E)min =

N0/{G(χline + V −1)} + Nel + Nhom. This expression realisti-
cally assumes that Eve cannot know the noises Nel and Nhom,
which are internal to Bob’s detection set-up. For comparison
with DR, the value of IAE is also plotted (the theoretical value
of IAE is obtained from ref. [13]).

tographic exchange. Table I shows the ideal and practical
net key rates of our reverse QKD protocol, as well as the
DR values for comparison. The RR scheme is efficient for
any value of G provided that the reconciliation protocol
achieves the limit given by IBA. However, unavoidable
deviations of the algorithm from Shannon’s limit reduce
the actual reconciled information Irec between Alice and
Bob, while IBE is of course assumed unaffected. For high
modulation (V ≈ 40) and low losses, the reconciliation
efficiency lies around 80%, which makes it possible to dis-
tribute a secret key at a rate of several hundreds of kilo-
bits per second. However, the achievable reconciliation

efficiency drops when the signal-to-noise ratio decreases,
but this can be improved by reducing the modulation
variance, which increases the ratio IBA/IBE . Although
the ideal secret key rate is then lower, we could pro-
cess the data with a reconciliation efficiency of 78% for
G = 0.49 (3.1 dB) and V = 27, resulting in a net key
rate of 75 kbits s−1 (see also Appendix A). This clearly
demonstrates that RR continuous-variable protocols op-
erate efficiently at and beyond the 3 dB loss limit of DR
protocols. We emphasize that this result is obtained de-
spite the fact that the evaluated reconciliation cost is
higher for RR than for DR: the better result for RR is
essentially due to its initial “quantum advantage”.

In photon-counting QKD, the key rate is limited by
the single-photon detectors, in which the avalanche pro-
cesses are difficult to control reliably at very high count-
ing rates. In contrast, homodyne detection may run at
frequencies up to tens of MHz. In addition, a specific
advantage of the high dimensionality of the QCV phase
space is that the field quadratures can be modulated with
a large dynamics, allowing the encoding of several key
bits per pulse (see Table I). Very high secret bit rates
are therefore attainable with our coherent-state protocol
on low-loss lines. For high-loss lines, our protocol is at
present limited by the reconciliation efficiency, but its in-
trinsic performances remain very high. Since most of the
limitations of the present proof-of-principle experiment
appear to be of a technical nature, there is still a con-
siderable margin for improvement, both in the hardware
(increased detection bandwidth, better homodyne effi-
ciency, lower electronic noise), and in the software (better
reconciliation algorithms [26] , see Appendix A). In con-
clusion, the way seems open for implementing the present
proposal at telecommunications wavelengths as a practi-
cal, high bit-rate, quantum key distribution scheme over
long distances.
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APPENDIX A: METHODS

Relevant Heisenberg relations

In a RR protocol, Alice’s estimator for xB and Eve’s
estimator for pB can be denoted respectively as αxA

and βpE , where α, β are real numbers. The corre-
sponding errors are xB|A,α = xB − αxA, and pB|E,β =
pB − βpE . Because Alice’s, Bob’s, and Eve’s oper-
ators commute, we have [xB|A,α, pB|E,β] = [xB, pB],

and thus the Heisenberg relation ∆x2

B|A,α∆p2

B|E,β ≥

N2
0 . Defining the conditional variances as V (xB |xA) =

minα{∆x2

B|A,α} and V (pB|pE) = minβ{∆p2

B|E,β}, we

obtain V (xB |xA)V (pB|pE) ≥ N2
0
, or, by exchanging x

and p, V (pB|pA)V (xB |xE) ≥ N2
0 .

Alice has the estimators (xA, pA) for the field
(xin, pin) = (xA + Ax, pA + Ap) that she sends, with
〈A2

x〉 = 〈A2
p〉 = sN0. Here s measures the amount of

squeezing possibly used by Alice in her state preparation
[14], with s ≥ V −1 for consistency with Heisenberg’s
relations. By calculating 〈p2

A〉 = (V − s)N0, 〈p2

B〉 =

Gp(V + χp)N0, 〈pApB〉 = G
1/2

p 〈p2

A〉, we obtain the con-
ditional variance V (pB|pA) = 〈p2

B〉 − |〈pApB〉|2/〈p2

A〉 =
Gp(s + χp)N0. This equation and the constraint s ≥
V −1 gives V (pB |pA) ≥ Gp(V

−1 + χp)N0, and similarly
V (xB |xA) ≥ Gx(V −1 + χx)N0. The bound on VB|A is
thus obtained by assuming that Alice may use squeezed
or entangled beams, while the bound on VB|E can only be
achieved if Eve uses an entangling attack. This reflects
the fact that squeezing or entanglement play a crucial role
in our security demonstration, even though the proto-
col implies coherent states. Our security proof addresses
individual gaussian attacks only, but as the entangling
cloner attack saturates the Heisenberg uncertainty rela-
tions, we conjecture that it encompasses all incoherent
(non-collective) eavesdropping strategies.

Experimental set-up

A continuous-wave laser diode at 780 nm wavelength
associated with an acousto-optic modulator is used to
emit 120-ns (full-width at half-maximum) pulses at a
800 kHz rate. The signal pulses contain up to 250
photons, while the local oscillator (LO) power is 1.3 ×
108 photons per pulse. The amplitude of each pulse
is arbitrarily modulated by an integrated electro-optic

modulator. However, owing to the unavailability of a
fast phase modulator at 780 nm, the phase is not ran-
domly modulated but scanned continuously. No genuine
secret key can be distributed, strictly speaking, but ran-
dom permutations of Bob’s data are used to provide re-
alistic data (see Appendix B). The data are organized
in bursts of 60,000 pulses, separated by synchronization
periods also used to lock the phase of the LO. The overall
homodyne detection efficiency is 0.81, due to the optical
transmission (0.92), the mode-matching efficiency (0.96)
and the photodiode quantum efficiency (0.92). For the
critical data at 3 dB loss, the mode-matching efficiency
was improved to 0.99, and thus the overall efficiency was
0.84. We also point out that many blocks of data were
exchanged around the 3 dB loss point, with a typical rate
above 55 kbit s−1.

Secret key distillation

A common bit string is extracted from the continuous
data by sequentially reconciling several strings (“slices”)
of binary functions of the gaussian key elements, apply-
ing a binary reconciliation protocol successively on each
bit [8, 10]. Here, we used five slices, each being corrected
either by a trivial one-way protocol (communicating the
bits) when the bit error rate (BER) is high, or by the two-
way protocol Cascade [27, 28] when the BER is low. Note
that the disclosed slices are useful for reconciling the re-
maining slices with less information leaking to Eve, even
though they of course do not yield secret bits as such. In
addition, Alice and Bob encrypt their classical messages
using the one-time pad scheme with a fraction of the
previous key bits, or a bootstrap key for the first block.
For slices corrected with Cascade, the exchanged pari-
ties are encrypted with the same key bits on both sides
[29], making Eve aware of the differences between Alice’s
and Bob’s parities (that is, the error positions) but not
of their individual values. Fully communicated slices are
also encrypted, thereby revealing no information at all to
Eve. Still, Eve may exploit the interactivity of Cascade
and gain some information on the final key by combin-
ing her knowledge of the error positions with that of the
correlations between Alice’s and Bob’s gaussian values.
In the present protocol, this information is numerically
calculated for an entangling cloner attack, and then de-
stroyed by privacy amplification. This is achieved by
appropriate “hashing” [30] functions (see Appendix B).
The resulting net secret key rate is then obtained by sub-
tracting, from the raw key rate, the cost of the one-time
pad encryption and the error-position information. Fi-
nally, let us emphasize that sliced reconciliation can be
made very close to a one-way protocol by increasing the
number of key elements from which the bits are jointly
extracted (multidimensional reconciliation [8]). This ap-
proach was not implemented here, but should deliver an
improved secret key rate, approaching the value from the
Csiszár-Körner formula [21, 22].
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APPENDIX B: SUPPLEMENTARY

INFORMATION

Experimental set-up

The source consists of a CW laser diode (SDL 5412) at
780 nm associated with an acousto-optic modulator, used
to chop pulses with a duration 120 ns (full width at half-
maximum), at a repetition rate 800 kHz. To reduce the
excess noise, a grating-extended external cavity is used,
and the beam is spatially filtered using a single mode
fiber. Light pulses are then split onto a beam-splitter,
one beam being the local oscillator (LO), the other Alice’s
signal beam. The data is organised in bursts of 60,000
pulses, separated by time periods used to lock the phase
of the LO, and sequences of pulses to synchronize the
parties. In the present experiment, there is a burst every
1.6 seconds, corresponding to a duty cycle of about 5%,
which is obviously under-optimised but should be easy
to improve in further experiments.

The coherent state distribution is generated by modu-
lating both the amplitude and phase of the light pulses
with the appropriate probability law. In the present ex-
periment, the amplitude of each pulse is arbitrarily mod-
ulated at the nominal 800 kHz rate by an integrated
electro-optic LiNbO3 Mach-Zehnder interferometer. In
contrast, due to the unavailability of a fast phase modu-
lator at 780 nm, the phase is not randomly modulated but
scanned continuously from 0 to 2π using a piezoelectric
transducer (PZT). For such a deterministic phase varia-
tion, the security of the protocol is not warranted, and
thus no genuine secret key could be distributed strictly
speaking. However, the experiment provides realistic
data, having exactly the awaited structure provided that
random phase permutation on Bob’s data are performed.

Due to an imbalance between the paths of the inter-
ferometer which modulates the amplitude of the signal
beam, the extinction is not strictly zero. In the present
experiment that is only aimed at a proof of principle, we
subtract the offset field from the data received by Bob. In
a real cryptographic transmission, the offset field should
be compensated by Alice, either by adding a zeroing field,
or by using a better modulator.

All voltages for the electro-optic modulator or the PZT
are generated by an acquisition board (National Instru-
ments PCI6111E) connected to a computer. Although
all discussions assume the modulation to be continuous,
digitised voltages are used in practice. With our experi-
mental parameters, a resolution of 8 bits is enough to hide
the amplitude or phase steps under the shot noise. Since
the modulation voltage is produced using a 16 bits con-
verter, and the data is digitised over 12 bits, we may fairly
assume the modulation and measurement to be continu-
ous.

The homodyne detection was checked to be shot-noise
limited for LO power up to 5 × 108 photons/pulse. In
the present experiment, we used 1.3× 108 photons/pulse
for LO power, while each signal pulse contains up to 250

photons. Depending on the run, the overall detection
efficiency is either 0.81 or 0.84, due to optical transmis-
sion (0.92), mode-matching visibility (0.96 or 0.99) and
photodiode quantum efficiency (0.92).

The experiment is thus carried out in such a way that
all useful parameters can be measured experimentally.
Reconciliation and privacy amplification protocols can
thus be performed in realistic – though not fully secret
– conditions. The limitations of the present set-up are
essentially due to the lack of appropriate fast amplitude
and phase modulators at 780 nm. This should be eas-
ily solved by operating at telecom wavelengths (1540-
1580 nm) where such equipment is readily available. Let
us point out also that it is not convenient to transmit sep-
arately the signal and LO, so a better solution would be
to use a frequency sideband technique similar to Mérolla
et al. [31]. Then all light pulses are transmitted together
along the same fibre, and a separate radio-frequency is
sent from Alice to Bob in order to reconstruct the optical
phase information.

Hypothesis about the detector’s noise : “realistic”

vs “paranoid” assumptions

After the quantum exchange, Alice and Bob reveal a
subset of their values taken randomly to evaluate the
transmission G and the total added noise variance. This
variance has four contributions: the shot noise N0, the
channel noise χlineN0, the electronics noise of Bob’s de-
tector (Nel = 0.33N0), and the noise due to imperfect
homodyne detection efficiency (Nhom = 0.27N0). The
two detection noises Nel and Nhom originate from Bob’s
detection system, so one may reasonably assume that
they do not contribute to Eve’s knowledge. This “re-
alistic” assumption has been followed in the article. In
that case, the noise from Bob’s detection system also
affects Eve’s information so, in equation (4b), we take
(VB|E)min = N0/{Gline(χline+V −1)}+Nel+Nhom, where
Gline stands for the line transmission.

In contrast, in a “paranoid” approach, one should as-
sume that the noises Nel and Nhom are also controlled by
Eve, that gives her a supplementary advantage. In that
case, (VB|E)min will be given by N0/{G(χ+V −1)}, where
G now includes both the line and detection efficiencies
and χ includes both the line and detection noises. In all
cases, the value of IBA is given by equation (4a), where χ
is the total equivalent noise including both transmission
and detection.

Presently we are able to extract practically a key with
up to 3.1 dB losses under the “realistic” approach with
a reverse reconciliation protocol. Considering now the
“paranoid” assumption and reverse reconciliation, the
ideal secret key rate is 420 kbits s−1 for a lossless line,
and 200 kbits s−1 for Gline = 0.79 (1.0 dB). However, se-
cret bits could be delivered only in the lossless case, at a
practical rate of 195 kbits s−1. It is clear that an increase
in the reconciliation efficiency would immediately trans-
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late into a larger achievable range. Let us point out that
we always assume in both the “realistic” or the “para-
noid” approach that Eve has an ideal software, quantum
memories, perfectly entangled beams, etc. If any of these
hypotheses is relaxed, the practical secure range may be
extended over the “threshold” presently set by the lim-
ited reconciliation efficiency. However, it is not the pur-
pose of the present paper to discuss such “constrained
attacks”.

Implementation of secret key distillation

Secret key distillation was performed by a computer
program written in standard C++ that implements the
steps described in the paper. Although Alice’s and Bob’s
data are both processed on the same computer, it is done
in the same way as if the parties were distant and were
using a network connection as classical channel. The par-
ticular platform used is a regular PC running Linux.

As bursts of data are input to the program, a part of
the gaussian key elements are sacrificed and used to es-
timate the characteristics of the quantum channel. This
includes the variances and the correlation coefficient be-
tween both sides, which would be exchanged between Al-
ice and Bob over the public authenticated classical chan-
nel in a real-life setup.

Depending on the value of the estimated IAB, the
two parties agree on appropriate binary functions (slices
[8, 10]) that will transform their gaussian values into bits.
These bits are then reconciled, as described in the paper,
with sliced error correction [8, 10] and an implementa-
tion [28] of Cascade [27] as a sub-routine. In our imple-
mentation, 5 binary functions are used per gaussian key
elements, out of which 2 or 3 (depending on IAB) are
fully disclosed, while the remaining 3 or 2 are reconciled
using Cascade.

Next, the data are moved to the privacy amplification
routine. Excluding the bits that are fully disclosed and
from which no secret key can be extracted, the reconciled
bits are processed by use of a transformation randomly
taken in a universal class of hash functions [30, 32], which
in our case is the class of truncated linear functions in a
finite field. First, we consider the reconciled bits as co-
efficients of a binary polynomial in a representation of
the Galois field GF(2110503), hereby called the reconciled
polynomial. Then Alice and Bob publicly and randomly
choose a random element of the same field and multi-

ply the reconciled polynomial with this chosen element.
Finally, they extract from the resulting polynomial the
desired number of least significant bits. In our imple-
mentation, the representation of the field is GF(2)[x]/(p),
where p = x110503 +x519 +1 is an irreducible polynomial
over GF(2), see ref. [33]. The fact that this operation
can be implemented efficiently [34] motivated our choice.
The size of the field allows us to process up to 110503
bits at once, or equivalently blocks of about 55200 gaus-
sian key elements when Cascade operates on 2 bits per
gaussian key element or of 36800 elements with 3 bits
per element. To produce a longer key, the gaussian key
elements must thus be grouped into blocks.

As explained in the paper, the number of bits that
are destroyed by privacy amplification depends on the
amount of information that could be inferred by a poten-
tial eavesdropper. An easvesdropper Eve has two sources
of knowledge. First, she may have attacked the quantum
channel and second, she knows the error positions of the
reconciled bits from listening to the execution of Cas-
cade. Let K be the final key, E the ancilla Eve uses
for quantum eavesdropping, and ∆ the error positions
revealed during reconciliation. We thus need to evalu-
ate I(K; E, ∆) = I(K; E) + I(K; ∆|E). The first term
on the rhs is upper bounded by IBE (in RR) or IAE (in
DR), while the second term is evaluated numerically for
an entangling cloner attack.

This numerical evaluation of I(K; ∆|E) comes down
to integrating I(K; ∆|E = e) for all possible outcomes e
of E, weighted by the probability density function p(e) of
E. In the case of the entangling cloner attack, E refers
both to the knowledge of Eve’s half of the EPR state
she injects and to her eavesdropping of the state being
sent to Bob, so E denotes a bivariate gaussian variable
whose covariance matrix can be calculated from the chan-
nel characteristics (i.e., attenuation and added noise am-
plitude). For a given outcome e of E, Eve can infer A and
B, Alice’s and Bob’s key elements as a bivariate gaussian
variable. Since K and ∆ are discrete functions of only
A and B, the probability distribution of K(A, B) and
∆(A, B) conditionally on E = e can be calculated, hence
giving I(K; ∆|E = e).

Finally, a part of the generated key is used to encrypt
[29] the execution of the reconciliation for the next block.
The remaining bits, namely the net secret key, can be
then used for instance to encrypt the classical communi-
cations between Alice and Bob using a one-time pad.
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